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Article history: Drug resistance is a common cause of failure in cancer chemotherapy treatments. In this
Received 31 March 2012 study, we used a pair of uterine sarcoma cancer lines, MES-SA, and the doxorubicin-
Accepted 20 July 2012 resistant MES-SA/Dx5 as a model system to examine resistance-dependent cellular
responses and to identify potential therapeutic targets. We used two-dimensional
Keywords: differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization
Proteomics time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein
DIGE expression changes induced by doxorubicin treatment and doxorubicin resistance. A
MALDI-TOF proteomic study revealed that doxorubicin-exposure altered the expression of 87 proteins
Doxorubicin in MES-SA cells, while no significant response occurred in similarly treated MES-SA/Dx5
Resistance cells, associating these proteins with drug specific resistance. By contrast, 37 proteins
Uterine cancer showed differential expression between MES-SA and MES-SA/DxS, indicating baseline

resistance. Further studies have used RNA interference, cell viability analysis, and analysis
of apoptosis against asparagine synthetase (ASNS) and membrane-associated progesterone
receptor component 1 (mPR) proteins, to monitor and evaluate their potency on the
formation of doxorubicin resistance. The proteomic approach allowed us to identify
numerous proteins, including ASNS and mPR, involved in various drug-resistance-forming
mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for
the treatment of doxorubicin-resistant uterine cancer.
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1. Introduction

Drug resistance reduces the effectiveness of medications used
in the treatment of diseases such as cancer. In clinical
practice, resistance becomes a serious problem when the
concentrations of anticancer compounds at dosages needed
to kill tumor cells, reach toxic levels. Biological processes
associated with drug resistance have been described, and
include the enhanced activities of membrane-embedded
drug efflux transporter molecules such as adenosine triphos-
phate binding cassette (ABC)-transporters, the alteration of
drug targeting molecules that repair pathways, and the
modulation of cellular signal transduction pathways that
lead to cell death [1].

Doxorubicin is an anticancer drug used in the treatment of
a wide range of cancers, including lung cancer, breast cancer,
and many other carcinoma types [2-4]. Doxorubicin’s precise
mechanism of action is complex; it interacts with DNA by
intercalation into DNA molecules from where it may inhibit
the synthesis of DNA, RNA, and proteins. Doxorubicin
resistance has been widely reported in reports of cancer
research into leukemia, osteosarcoma, breast cancer, lung
cancer, and uterine cancer [5-9], and is a major obstacle to
the successful treatment of cancer patients receiving
chemotherapy.

Two-dimensional electrophoresis (2-DE) is a key tech-
nique used in the profiling of thousands of proteins in
biological samples; it plays a complementary role to LC/
MS-based proteomic analysis [10]. However, a reliable quan-
titative comparison between gels and gel-to-gel variations is
a challenge for 2-DE analysis. The introduction of 2D-DIGE
was a significant improvement in gel-based protein quanti-
tation and detection; the method can co-detect numerous
samples that are present in the same 2-DE. 2D-DIGE
minimizes gel-to-gel variations, and compares the relative
amounts of protein features across different gels by using an
internal fluorescent standard. Moreover, the technique offers
the advantages of a broader dynamic range, increased
sensitivity, and greater reproducibility than traditional 2-DE
does. 2D-DIGE innovative technology relies on the pre-
labeling of protein samples with fluorescent dyes (Cy2, Cy3,
and Cy5) before commencing electrophoresis. Each dye type
has a unique fluorescence wavelength, allowing the simul-
taneous separation of multiple samples, each containing an
internal standard. The standard, which is a pool of an equal
quantity of the experimental protein samples, provides
accurate normalization data and increases the statistical
confidence for relative quantitation among different gels
[11-13].

The aims of this investigation were to conduct an in vitro
investigation into doxorubicin-resistance mechanisms in
uterine cancer using proteomic strategies, to increase our
understanding of the molecular processes involved, and to
identify potential resistance biomarkers with possible diag-
nostic or therapeutic applications. Thus, we selected a pair of
uterine sarcoma cancer lines, MES-SA, and its doxorubicin-
resistant partner MES-SA/DxS5 as a model system to examine
resistance-dependent cellular protein expression. The liter-
ature also contains reports of studies that used RNA

interference against selected identified proteins, ASNS, and
membrane-associated progesterone receptor component 1
(mPR) to monitor and evaluate their potency against doxo-
rubicin resistance.

2. Materials and methods

2.1. Chemicals and reagents

Generic chemicals were purchased from Sigma-Aldrich (St.
Louis, USA), and the reagents for 2D-DIGE were purchased
from GE Healthcare (Uppsala, Sweden). All the chemicals and
biochemicals used in this study were of analytical grade. All
Western blot and ELISA used with primary antibodies were
purchased from Genetex (Hsinchu, Taiwan) and anti-mouse,
and anti-rabbit secondary antibodies were purchased from GE
Healthcare (Uppsala, Sweden).

2.2. Cell lines and cell cultures

The uterine sarcoma cancer line MES-SA and its doxorubicin
resistance line MES-SA/Dx5 were both purchased from the
American Type Culture Collection (ATCC), Manassas, VA
[14,15]. Cells were cultured in McCoy’s 5a modified medium
containing 10% fetal bovine serum, L-glutamine (2 mM),
streptomycin (100 pg/mL), penicillin (100 IU/mL) (all from
Gibco-Invitrogen Corp., UK) and maintained without / with
0.4 uM doxorubicin, respectively. All cells were incubated at
37 °C in a humidified atmosphere containing 5% CO,.

2.3.  MTT cell viability assay

MES-SA and MES-SA/Dx5 cells (5000 cells/well) growing
exponentially were seeded into 96-well plates. The culture
cells were incubated for 24 h before treatment with indicative
concentrations of doxorubicin for 48 h and untreated as
control. After removal of the medium, 100 pL of MTT working
solution (1 mg/mL) (Sigma) was added into each well,
followed by a further incubation at 37 °C in 5% CO, for 4 h.
The supernatant was carefully removed followed by added
100 pL. of DMSO to each well and shaken for 15 min. The
absorbance of samples was measured at a wavelength of
540 nm in a multi-well plate reader. Values were normalized
against the untreated samples and were averaged from
8 independent measurements.

2.4. Sample preparation for proteomic analysis

Cells grow in ~80% confluence and treated with/without
0.1 uM doxorubicin for 48 h. For total cellular protein analysis,
both MES-SA and MES-SA/Dx5 cells were washed in chilled
0.5xPBS and scraped in 2-DE lysis buffer containing 4% w/v
CHAPS, 7 M urea, 2 M thiourea, 10 mM Tris-HCl, pH 8.3, 1 mM
EDTA. Lysates were homogenized by passage through a
25-gauge needle at least ten times, insoluble material was
removed by centrifugation at 13,000 rpm for 30 min at 4 °C,
and protein concentrations were determined using coomassie
protein assay reagent (BioRad).
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2.5. 2D-DIGE and gel image analysis

Quantified protein samples were labeled with N-hydroxy
succinimidyl ester-derivatives of the cyanine dyes Cy2, Cy3
and Cy5. In brief, 150 pg of protein sample was minimally
labeled with 375 pmol of either Cy3 or Cy5 for comparison on
the same 2-DE. In order to facilitate image matching and
cross-gel statistical comparison, a pool of all samples in each
condition was also prepared and labeled with Cy2 at a molar
ratio of 2.5 pmol per pg of protein as an internal standard for
all gels. Hence, the triplicate protein samples and the internal
standard could be run and quantified on multiple 2-DE. The
labeling reactions were performed in the dark on ice for
30 min and then dyes were quenched with a 20-fold molar
ratio excess of free 1-lysine for 10 min. The differentially Cy3-
and Cy5-labeled samples were mixed with the Cy2-labeled
internal standard and reduced with dithiothreitol for 10 min.
IPG buffer, pH 3-10 nonlinear (2% (v/v), GE Healthcare) was
added and the final volume was adjusted to 400 pL with
2D-lysis buffer for rehydration. The rehydration process was
performed with immobilized non-linear pH gradient (IPG)
strips (pH 3-10, 24 cm) which were later rehydrated by
CyDye-labeled samples in the dark at room temperature at
least 12 h. Isoelectric focusing was then performed using a
Multiphor II apparatus (GE Healthcare) for a total of 62.5 kV-h
at 20 °C. Strips were equilibrated in 6 M urea, 30% (v/v)
glycerol, 1% SDS (w/v), 100 mM Tris-HCl (pH 8.8), 65 mM
dithiothreitol for 15 min and then in the same buffer
containing 240 mM iodoacetamide for another 15 min. The
equilibrated IPG strips were transferred onto 26 x20-cm 12.5%
polyacrylamide gels cast between low fluorescent glass plates.
The strips were overlaid with 0.5% (w/v) low melting point
agarose in a running buffer containing bromophenol blue. The
gels were run in an Ettan Twelve gel tank (GE Healthcare) at
4 W per gel at 10 °C until the dye front had completely run off
the bottom of the gels. Afterward, the fluorescence 2-DE gels
were scanned directly between the low fluorescent glass
plates using an Ettan DIGE Imager (GE Healthcare). This imager
is a charge-coupled device-based instrument that enables
scanning at different wavelengths for Cy2-, Cy3-, and Cy5-
labeled samples. Gel analysis was performed using DeCyder 2-D
Differential Analysis Software v7.0 (GE Healthcare) to detect,
normalize and quantify the protein features in the images.
Features detected from non-protein sources (e.g. dust parti-
cles and dirty backgrounds) were filtered out. Spots
displaying in a =1.5 average-fold increase or decrease in
abundance with a p-value<0.05 were selected for protein
identification.

2.6. Protein staining

Colloidal coomassie blue G-250 staining was used to
visualize CyDye-labeled protein features in 2-DE. Bonded
gels were fixed in 30% v/v ethanol, 2% v/v phosphoric acid
overnight, washed three times for each 30 min with ddH,0
and then incubated in 34% v/v methanol, 17% w/v ammo-
nium sulphate, 3% v/v phosphoric acid for 1 h, prior to
adding 0.5 g/L coomassie blue G-250. The gels were left to
stain for 3-5days. No destaining step was required.
The stained gels were imaged on an ImageScanner III

densitometer (GE Healthcare), which processed the gel
images as .tif files.

2.7. In-gel digestion

Excised post-stained gel pieces were washed three times in 50%
acetonitrile, and then dried in a SpeedVac for 20 min, reduced
with 10 mM dithiothreitol in 5 mM ammonium bicarbonate pH
8.0 (ammonium bicarbonate) for 45 min at 56 °C and then
alkylated with 50 mM iodoacetamide in 5 mM ammonium
bicarbonate for 1 h at room temperature in the dark. The gel
pieces were washed two times in 50% acetonitrile and
vacuum-dried before reswelling with 50 ng of modified trypsin
(Promega) in 5 mM ammonium bicarbonate. The pieces were
overlaid with 10 uL of 5 mM ammonium bicarbonate and
trypsinized for 16 h at 37 °C. Supernatants were collected,
peptides were further extracted twice with 5% trifluoroacetic
acid in 50% acetonitrile and the supernatants were pooled.
Peptide extracts were vacuum-dried, resuspended in 5 L
ddH,0, and stored at —20 °C prior to MS analysis.
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Fig. 1 - Dose-dependent kinetics of doxorubicin-induced loss
of cell viability and increased expression of P-glycoprotein
and topoisomerase 2 in MES-SA and MES-SA/DxS5 cells.

(A) MES-SA and MES-SA/DxS5 cells grown overnight were
treated with a range of doses of doxorubicin and cell viability
was determined by MTT assay. (B) Expression

of P-glycoprotein and topoisomerase 2 in MES-SA and
MES-SA/Dx5 cells were monitored by immunoblotting.
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2.8. Protein identification by MALDI-TOF/TOF MS with 0.5uL of a matrix solution containing a-cyano-4-

hydroxycinammic acid at a concentration of 1 mg/mL of 50%
For protein identification, extracted peptides were subjected ACN/0.1% TFA (v/v), spotted onto an anchorchip target plate
to peptide mass fingerprinting (PMF) using MALDI-TOF MS. (Bruker Daltonics) and dried. The peptide mass fingerprints
Briefly, 0.5 uL of trypsin digested protein sample was mixed were acquired using an Autoflex III mass spectrometer
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Fig. 2 - Proteomic comparison across MES-SA and MES-SA/DxS5 treated with/without doxorubicin. (A) Schematic representation
of the 2D-DIGE workflow to monitor the differentially expressed proteins correlated to baseline resistance and doxorubicin
specific resistance in uterine cancer. (B) 2D-DIGE images of MES-SA and MES-SA/DxS5 treated with ICso concentration of
doxorubicin of MES-SA or left untreated.



Table 1 - Alphabetical list of identified differentially expressed proteins between doxorubicin sensitive uterine cancer cells (MES-SA) and doxorubicin resistant uterine
cancer cells (MES-SA/Dx5) obtained after 2D-DIGE coupled with MALDI-TOF mass spectrometry analysis. * Average ratio of differential expression ([l1.5-fold increase or
decrease) between doxorubicin resistant uterine cancer cells (MES-SA/Dx5) and doxorubicin sensitive uterine cancer cells (MES-SA). ® Average ratio of differential expression
(l1.5-fold increase or decrease) between 0.1 pM doxorubicin-treated and untreated MES-SA cells. ¢ Average ratio of differential expression ([l1.5-fold increase or decrease)
between 0.1 pM doxorubicin-treated and untreated MES-SA/DxS5 cells. Gray shaded cells indicate proteins where the changes between 0.1 pM doxorubicin-treated and

untreated MES-SA cells are significantly greater than the changes between 0.1 pM doxorubicin-treated and untreated MES-SA/Dx5 cells. ¢ These proteins have been
identified by both MALDI-TOF MS and MALDI-TOF/TOF MS. The parameters (sequence coverages, MASCOT values, matched peptide numbers and matched peptide
sequences) shown in brackets are obtained from MALDI-TOF/TOF MS sequence analysis. e. In MS analysis, we listed top 2 score peptide sequences in the matched peptide
column. In MS/MS analysis, we listed the MS/MS-sequenced peptide with bracket in the matched peptide column.
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(Bruker Daltonics) in reflector mode and the raw data was
analyzed with FlexAnalysis acquisition software (version 3.0,
Bruker Daltonics). The algorithm used for spectral annotation
was SNAP (Sophisticated Numerical Annotation Procedure).
The following metrics were used: peak detection algorithm:
SNAP; signal to noise threshold: 25; relative intensity thresh-
old: 0%; minimum intensity threshold: 0; maximal number of
peaks: 50; quality factor threshold: 1000; SNAP average
composition: averaging; baseline subtraction: median; flat-
ness: 0.8; and median level: 0.5. The spectrometer was also
calibrated with a peptide calibration standard (Bruker
Daltonics) and internal calibration was performed using
trypsin autolysis peaks at m/z 842.51 and m/z 2211.10 (MS
BioTools version 3.0, Bruker Daltonics). Peaks in the mass
range of m/z 800-3000 were used to generate a peptide mass
fingerprint that was searched against the Swiss-Prot/TrTEMBL
database (20080918) with 397539 entries using Mascot

A

2% 3% 3%

2%

Functional ontology-Baseline resistance

software v2.2.06 (Matrix Science, London, UK). The following
parameters were used for the search: Homo sapiens; tryptic digest
with a maximum of 1 missed cleavage; carbamidomethylation of
cysteine, partial protein N-terminal acetylation, partial methio-
nine oxidation and partial modification of glutamine to
pyroglutamate and a mass tolerance of 50 ppm. Identification
was accepted based on significant MASCOT Mowse scores
(p<0.05), spectrum annotation and observed versus expected
molecular weight and pI on 2-DE. MALDI-TOF/TOF analysis was
performed in LIFT mode using the same instrument. MS/MS ion
searches were performed using Mascot with the same search
parameters as above and using an MS/MS tolerance of +0.2 Da.

2.9. Immunoblotting

Immunoblotting was used to validate the differential expression
of mass spectrometry identified proteins. Cells were lysed with a
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Fig. 3 - Functional classification of identified proteins correlated to (A) baseline resistance and (B) doxorubicin specific

resistance in uterine cancer by 2D-DIGE/MALDI-TOF MS.
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Fig. 4 - Representative immunoblotting and ELISA analyses for selected differentially expressed proteins identified by
proteomic analysis in MES-SA and MES-SA/Dx5 treated with/without doxorubicin. The levels of identified proteins including
(A) ASNS, (B) HSP-27, (C) calcineurin A, (D) peroxiredoxin-2, (E) creatine kinase B, (F) annexin A5, (G) mPR, (H) cyclophilin A,
(I) nucleophosmin were validated by immunoblotting; while (J) HSP-60 was validated by ELISA in MES-SA and MES-SA/Dx5
treated with/without doxorubicin. The representative immunoblots/ELISA analysis (left panels) and 2D-images of the
identified proteins (right panels) were shown in this figure.
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lysis buffer containing 50 mM HEPES pH 7.4, 150 mM Nacl,
1% NP40, 1 mM EDTA, 2 mM sodium orthovanadate, 100 pg/mL
AEBSF, 17 ug/mL aprotinin, 1 ug/mL leupeptin, 1 pg/mL
pepstatin, 5 uM fenvalerate, 5 uM BpVphen and 1 pM okadaic
acid prior to protein quantification with Coomassie Protein
Assay Reagent (BioRad). 30 pg of protein samples were diluted in
Laemmli sample buffer (final concentrations: 50 mM Tris pH 6.8,
10% (v/v) glycerol, 2% SDS (w/v), 0.01% (w/v) bromophenol blue)
and separated by 1D-SDS-PAGE following standard procedures.
After transferring separated proteins onto 0.45 pm immobilon P
membranes (Millipore), the membranes were blocked with 5% w/
v skim milk in TBST (50 mM Tris pH 8.0, 150 mM NaCl and 0.1%
tween-20 (v/v)) for 1 h. Membranes were incubated in primary
antibody solution in TBS-T containing 0.02% (w/v) sodium azide
for 2 h. Membranes were washed in TBS-T (3x10 min) and then
probed with the appropriate horseradish peroxidase-coupled
secondary antibody (GE Healthcare). After washing in TBS-T for
6 times (15 min each), immunoprobed proteins were visualized
using an enhanced chemiluminescence method (Visual Protein
Co.).

2.10.  Enzyme-linked immunosorbent assay (ELISA)

EIA polystyrene microtiter plates were coated with 50 pg of
protein lysate sample and incubated at 37 °C for 2 h. The plate
was washed three times with phosphate buffered saline with
tween-20 (PBS-T) and three times with PBS. Plates were then
blocked with 100 pL of 5% skim milk in PBS at 37 °C for 2 h and
then washed three times with PBST. Antibody (Abcam)
solution was added and incubated at 37 °C for 2 h. After
washing with PBST and PBS for 10 times in total, 100 uL of
peroxidise-conjugated secondary antibody in PBS was added
for incubation at 37 °C for 2 h. Following 10 washes, 100 uL of
3,3/,5,5'-tetramethyl benzidine (Pierce) was added. After
incubation at room temperature for 30 min, 100 uL of 1 M

A

Dx5 Day1

H,S0, was added to stop the reaction and the absorbance at
450 nm measured using a Stat Fax 2100 microtiter plate reader
(Awareness Technology Inc. FL, USA).

2.11.  siRNA design, construction and transfection

The siRNA against mPR and ASNS was synthesized by
Invitrogen. The targeting sequences 5'-AAU UUG CGG CCU
UUG GUC ACA UCG A-3’ and 5-AGU GAA CUG AGA CUC CCA
GUC ACU C-3’ against mPR and sequences 5'-UAU CAG AUU
GGA AUC CUC AAA CGU C-3’ and 5’-UUG UUU GCU CAA UUC
CUC CUU UGU C-3’' against asparagine synthetase were
designed and verified to be specific by Blast search against
the human genome, and sequences of similar GC contents
which do not match any known human coding sequence were
used for negative control against mPR and asparagine
synthetase. Transfection was mediated with Lipofectamine
RNAIMAX (Invitrogen) according to the manufacturer’s in-
struction. Briefly, cells were transfected with 60 nM of mPR
siRNA, 100 nM asparagine synthetase siRNA or the corre-
sponding control (pGCsi-control) in serum free medium
containing Lipofectamine RNAIMAX for 4h followed by
recovery in medium containing 10% FCS for 24 h. The
efficiency of siRNA knockdown was monitored with immu-
noblotting by using primary antibodies against mPR and
asparagine synthetase.

2.12.  Flow cytometry analysis for apoptosis detection

Annexin-V/propidium iodide (PI) double assay was performed
using the Annexin V, Alexa Fluor® 488 Conjugate Detection
kit (Life technologies). Following doxorubicin treatment, cells
were trypsinized from culture dish and washed twice with
cold PBS. 1x10° cells were resuspended in 500 pL binding
buffer and stained with 5 pL Alexa Fluor 488 conjugated
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Fig. 5 - Efficiency of mPR siRNA and ASNS siRNA on the inhibition of mPR and ASNS expression in MES-SA/DxS5 cells. MES-SA/
Dx5 cells grown overnight were treated with 60 nM mPR-specific siRNA (A) or 100 nM ASAN-specific siRNA (B) for indicated
periods. Expression of mPR and ASAN in MES-SA/DxS5 cells were monitored with immunoblotting by using primary antibodies

against mPR and ASAN, respectively.
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annexin V according to the manufacturer’s instructions. 1 pL
100 pg/mL propidium iodide (PI) was added and mixed gently
to incubate with cells for 15 min at room temperature in the
dark. After incubation period, samples were subjected to
FCM analysis in 1 h. using BD Accuri C6 Flow Cytometry
(BD Biosciences, San Jose, CA). The data were analyzed
using Accuri CFlow® and CFlow Plus analysis software (BD
Biosciences).

3. Results

3.1. Identification of proteins involved in baseline and
doxorubicin specific resistance in human uterine cancer cells

For this study, we prepared a doxorubicin-sensitive uterine
cancer cell line, MES-SA, by growing in a doxorubicin-free
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Fig. 6 — Effect of mPR siRNA and ASNS siRNA inhibition on MES-SA and MES-SA/Dx5 cell viability. (A) MES-SA and MES-SA/Dx5
cells grown overnight were pre-treated with 60 nM mPR-specific siRNA or scramble siRNA with similar GC content. Expression
of mPR in MES-SA and MES-SA/DxS5 cells was monitored by immunoblotting by using primary antibodies against mPR.

(B) MES-SA and MES-SA/DxS5 cells grown overnight were pre-treated with 100 nM ASNS-specific siRNA or scramble siRNA with
similar GC content. Expression of ASNS in MES-SA and MES-SA/DxS5 cells was monitored with immunoblotting by using
primary antibodies against ASNS. MTT-based viability assays were performed where 500 (C) MES-SA and (D) MES-SA/Dx5 cells
seeded overnight were pre-treated with indicated concentrations of mPR-specific siRNA or ASNS-specific siRNA combining
with corresponding scramble siRNA. After 24 h, cells were treated with MTT and then DMSO added and the plates shaken for
20 min followed by measurement of the absorbance at 540 nm. Values were normalized against the untreated samples and are
the average of 4 independent measurements +SD.
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Fig. 7 - Effect of doxorubicin on cell viability of mPR siRNA
and ASNS siRNA-silenced MES-SA and MES-SA/Dx5 cells.
MTT-based viability assays were performed where 5000
MES-SA and MES-SA/DxS5 cells seeded into 96-well plate for
overnight incubation followed by pre-treated with (A) 60 nM
mPR-specific siRNA or (B) 100 nM ASNS-specific siRNA
combining with corresponding scramble siRNA. After 24 h,
cells treated indicated concentrations of doxorubicin for 48 h
followed by incubation with MTT and then DMSO added and
the plates were shaken for 20 min followed by measurement
of the absorbance at 540 nm. Values were normalized
against the untreated samples and are the average of 4
independent measurements +SD.

medium containing 10% (v/v) fetal bovine serum. The MES-
SA-resistant cell line, MES-SA/Dx5, was grown under contin-
uous exposure to 0.4 pM doxorubicin to maintain the multiple
drug resistance phenotype, and the cells were cultured in a
drug-free medium for at least 2 weeks prior to use. The ICso of
MES-SA and MES-SA/Dx5 cells were 0.1 uM and 4.3 uM,
respectively (Fig. 1A). MES-SA/Dx5 cells showed a significant
upregulation in P-glycoprotein and topoisomerase 2 levels
(Fig. 1B), demonstrating a difference in doxorubicin resistance
between the 2 groups of cells. These distinctly different
physiological characteristics made these cell lines appropriate
for use as a doxorubicin-resistant cell model for a drug-
resistance-associated study.

We used 2D-DIGE to monitor differentially expressed
proteins that were associated with baseline resistance and
doxorubicin-specific resistance in uterine cancer (Fig. 2A). For
baseline resistance analysis, cell lysates from 3 independent
MES-SA and MES-SA/Dx5 cultures were analyzed by 2D-DIGE.

Triplicates of these 2 different doxorubicin-resistant cell lines
were compared simultaneously by 2D-DIGE using pH 3-10
non-linear strips to test a wide range of cellular proteins and
provide a global overview of the uterine cancer proteome. The
proteomic results indicated that 1755 protein spots could be
consistently monitored using this approach (Fig. 2B). In
general, the proteomic patterns between MES-SA and MES-
SA/Dx5 were similar and only 6.5 % (114 protein spots)
displayed greater than a 1.5-fold change in intensity (p<0.05)
(Fig. 2A and B upper panel), in which 37 protein spots were
identified by MALDI-TOF MS as representing 33 different
proteins (Table 1 and Supplementary Figs. 1 and 2). Functional
classification of these proteins revealed that most were
involved in biosynthesis, metabolism, and protein folding
(Fig. 3A). To our knowledge, there are no reports of the
identification of numerous proteins, including ASNS and mPR,
in any doxorubicin-related baseline resistance study. Conse-
quently, these proteins are potential candidates for resistance-
related therapy. As expected, 2D-DIGE analysis also identified a
number of proteins associated with doxorubicin resistance,
including apoptosis regulator Bcl-W and cyclophilin A (Supple-
mentary Table 1).

For doxorubicin-specific resistance analysis, doxorubicin
was used at its ICsy concentration against MES-SA cells
(0.102 pM) to treat both MES-SA and MES-SA/Dx5 cells. As
expected, a larger fraction (76% of total identified proteins) of
MES-SA-expressed proteins exhibited altered expression levels,
compared to only 4.3% of MES-SA/Dx5-expressed proteins
(Fig. 2A and B, middle and bottom panels), implying that
proteins undergoing significant alterations in doxorubicin-
treated MES-SA, but not in MES-SA/Dx5, are crucial to the
formation of doxorubicin-specific drug resistance. MALDI-TOF
MS produced 87 protein spots, representing 78 different pro-
teins (Table 1 and Supplementary Figs. 1 and 2). Functional
classification of these proteins revealed that most were
involved in protein folding, metabolism, signal transduction,
and biosynthesis (Fig. 3B). There are no literature reports of the
identification of numerous proteins, including COP9 signalosome
complex subunit 4 in any doxorubicin-related studies. These
proteins play important roles in the formation of doxorubicin
resistance and, as expected, 2D-DIGE analysis identified a
number of proteins known to be associated with doxorubicin-
specific resistance, including annexin A5 and TNFR-associated
protein 1.

3.2. Validation of characterized baseline resistance and
doxorubicin specific resistance associated proteins via
immunoblotting and ELISA analysis

This proteomic study identified some well-characterized base-
line resistance and doxorubicin-specific resistance-associated
proteins, such as cyclophilin A and annexin AS. It was essential
to validate the expression of these proteins using independent
experiments. To this end, we used immunoblot and ELISA
analyses to confirm the expression levels of ASNS, calcineurin A,
creatine kinase B, mPR, nucleophosmin, HSP-27, peroxiredoxin-2,
annexin A5, cyclophilin A, and HSP-60 obtained from MES-SA and
MES-SA/Dx5 cell lysates, treated with or without doxorubicin
(Fig. 4). We found that ASNS, creatine kinase B, mPR,
nucleophosmin, peroxiredoxin-2, and cyclophilin A were
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upregulated in MES-SA/Dx5, compared to the levels present
in MES-SA. However, calcineurin A antibody showed down-
regulation in MES-SA/Dx5 compared to its levels in MES-SA
cells. These results confirmed the differential baseline resis-
tance between MES-SA and MES-SA/Dx5. Additionally, a
comparison of protein levels between MES-SA and MES-SA/
Dx5 cells treated or untreated with 0.1 uM doxorubicin
(doxorubicin’s ICsp concentration against MES-SA) revealed
that nucleophosmin, HSP-27, annexin AS, and cyclophilin A
exhibit significant alterations in doxorubicin-treated MES-SA,
but not in MES-SA/DxS5 cells. This observation confirmed that
these differentially expressed proteins are associated with
doxorubicin-specific resistance in uterine cancer. Overall,
our immunoblotting results and ELISA analyses are in
agreement with the 2D-DIGE analysis results.

3.3. Evaluation of the roles of mPR and ASNS on doxorubicin
resistance in uterine cancer using siRNA knockdown

We found that ASNS and mPR are overexpressed in doxorubicin-
resistant MES-SA/Dx5 cells compared to doxorubicin-sensitive
MES-SA cells; these 2 proteins are among the most differentially
expressed proteins identified by our proteomic analysis. We
performed knockdown experiments in MES-SA and MES-SA/Dx5
cells to evaluate the roles of mPR and ASNS in doxorubicin
resistance. Immunoblot analysis showed greater than 90%
efficiency in the reduction of endogenous mPR and ASNS protein
levels when alpha-tubulin and GAPDH were the internal stan-
dards. We could maintain ASNS and mPR knockdown efficiency
for more than 5 days (Figs. 5, and 6A, B). Knockdown of mPR and
ASNS with the indicated concentrations of siRNA results in
significantly reduced viability in the MES-SA and MES-SA/Dx5
cells, with reductions in viability of approximately 20% and 30%,
respectively (Fig. 6C and D). MTT assay revealed no decreased
viability in mPR knockdown MES-SA cells, and a 35% reduction in
the viability of mPR knockdown MES-SA/Dx5 cells following
treatment with the indicated concentrations of doxorubicin
compared to scramble siRNA transfected controls (Fig. 7A).
Additionally, viability assay of ASNS knockdown MES-SA cells
showed no reduction in cell viability, whereas ASNS knock-
down MES-SA/DxS5 cell viability (transfected with scramble
siRNA) was decreased by 70% compared to controls follow-
ing treatment with the indicated concentrations of doxoru-
bicin (Fig. 7B).

We used flow cytometry with propidium iodide staining
and annexin V-conjugated Alexa Fluor 488 to analyze the
percentages of apoptotic MES-SA cells and MES-SA/Dx5 cells
induced by various concentrations of doxorubicin treatment,
with or without mPR or ASNS knockdown. The total number
of apoptotic cells is represented by the numbers of early
apoptotic cells plotted in the LR quadrant and late apoptotic
cells displayed in the UR quadrant of the resulting histograms.
We found that treatment of doxorubicin at the doses from
0xICsp to 2xICsg increases the percentages of total apoptotic
cells (LR+UR) in MES-SA from 15.1% to 37.3% compared with
changes from 14% to 39.2% in mPR knockdown MES-SA cells.
Thus, mPR has no direct effect on doxorubicin-induced
MES-SA cell apoptosis (Fig. 8A). By contrast, doxorubicin
treatment of MES-SA/Dx5 cells from 0xICsy to 2xICso in-
creases the percentages of total apoptotic cells (LR+UR) from

17.9% to 56.6% compared with changes from 21.3% to 59.4% in
mPR knockdown MES-SA/Dx5 cells, whereas the number of
late apoptotic cells (UR) in MES-SA/Dx5 and mPR knockdown
MES-SA/Dx5 cells showed increases from 8.7% to 47% and
from 10.5% to 52.8%, respectively. These results indicated that
mPR has a minor effect on doxorubicin-induced late apoptosis
in MES-SA/Dx5 cells, but has no significant effect on the total
number of doxorubicin-induced apoptotic MES-SA/Dx5 cells
(UR+LR) (Fig. 8B).

Further study on ASNS showed that treatment of MES-SA
cells with doxorubicin at doses from O0xICsy, to 2xICsq
increased the number of total apoptotic cells (LR+UR) from
19.2% to 58.2%, compared with increases ranging from 22.5%
to 59.8% in ASNS knockdown MES-SA cells. These results
indicated that ASNS has no direct effect on doxorubicin-
induced MES-SA cell apoptosis (Fig. 8C). By contrast, we found
that treatment of MES-SA/Dx5 cells with doxorubicin at doses
from 0xICsg to 2xICsg increased the number of apoptotic cells
(LR+UR) from 14.4% to 64%, compared with increases from
30.8% to 83.6% in ASNS knockdown MES-SA/Dx5 cells,
whereas the percentages of late apoptotic cells (UR) were
increased from 7.9% to 53.8%, and from 15.7% to 76.1% in
MES-SA/Dx5 and ASNS knockdown MES-SA/Dx5 cells, respec-
tively. This finding indicates that ASNS plays a significant role in
mediating doxorubicin-induced apoptosis in MES-SA/Dx5
cells, and that this mediation occurs predominantly during
late-stage apoptosis (Fig. 8D).

The number of total apoptotic cells (LR+UR) in mPR or
ASNS knockdown MES-SA and that in MES-SA/Dx5 cells are
greater than the number for parental MES-SA or MES-SA/Dx5
cells, implying that mPR RNAi or ASNS RNAI alone is sufficient
to induce MES-SA and MES-SA/Dx5 cellular apoptosis. This
effect is considerably more significant in doxorubicin resis-
tant MES-SA/Dx5 cells than it is in doxorubicin sensitive
MES-SA cells.

4, Discussion

A better understanding of chemotherapy-related drug resis-
tance mechanisms is needed to provide opportunities for the
diagnosis and therapy of cancer. Most of the functional
information on cancer chemoresistance was acquired from
transcription-level studies, rather than from translation-level
studies. Past research into drug resistance mechanisms
started with a known single-marker candidate. We adopted
an innovative global, high-resolution, and high-throughput
proteomic approach based on 2D-DIGE coupled with MALDI-
TOF/TOF MS to identify proteins that were differentially
expressed in the doxorubicin-resistant human uterine cancer
cell line, MES-SA/Dx5, and its parental cell line MES-SA, to
provide a complete view of protein expression and protein-
protein interactions. We observed 114 MALDI-identified
protein spots that showed significant differences either in
expression between the 2 cell lines, or in protein expression
resulting from doxorubicin-induced changes. Ten proteins
were identified by immunoblotting and ELISA analysis using
commercially available antibodies. We validated the func-
tions of mPR and ASNS in drug resistance, and found
that their overexpressions contribute significantly to the
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development of doxorubicin resistance in MES-SA/Dx5 cells. cancer cells, and that these different mechanisms may
Our findings demonstrate that multiple processes are in- contribute to chemotherapeutic resistance in the treatment
volved in the development of drug resistance in uterine of uterine cancer.
A Ctrl Dox 1xIC, Dox 2xIC,,
Gate' [No Gating). Gate' [No Gating] Gate' [No Gating).
7.8% 22.5% 21.9%
o ; =y
MES-SA 8 £ 3 ;1 3 s
<] ’ B
E / 7.3% o 14.8% - 13.0%
=] “Jl}nul:‘ T T T S TR I T Y R R AL, R
E FL1-H FLA-H FLA-H
o
e Gate [No Gating] Gate [N Gating] Gate' [No Gating]
o 9.3% 24.0% 24.6%
T
;
mPRsiRNA ﬁ
MES-SA T i
g 3 ’ 3 3 #
Y 4 =
*q , o I
/ 4.7% 1. % 15.2% : 14.1%
(‘J}Hm:AHHJ T “;ﬁlllmm‘uujlnwlﬂ||:||-|J1 1J||m|: b R
FL1-H FLI-H FLI-H
FL1-H/ Annexin V
B Ctrl Dox 0.5xIC;, Dox 1xICy, Dox 2xICq,
% Gate [No Gating] % Gate [Na Galing] % Gate [No Gating) % Gate [No Gating]
E 8.7% E 21.7% E 37.3% 3 47.0%
Ly 5y -y oy
3 E 5 3
Dx5 % E'i; 4 ;'l; ? 3“5!
sl = 7 4 = 3 « 7 ﬁl
8| - 4 53 / %
£ 3 9.2% R 8.5% 3 7.0% 9.6%
3 A2 3 Pt S b I 1
.'E FL1H FL1H FLIH FLIH
o
2 ; Gate [MNo Gating] % Gate [Na Gating] % Gate [No Gating) % Gate Mo Gating]
o g 10.5% : 26.0% g 42.1% 3 52.8%
- s N N
. [ 3 3 3 3
mPRsiRNA k| 1 9 9
Dx5 ol BPAT @ Yy 4 ny Y f
d 3 ; 2 3 K & 1 g 3
%q / %q / % i
10.8% 1 8.2% 3 6.5% 6.6%
AT b T & Frrm—r T b v T
W2 4 b o’ W2 b b Wl w4 s b W o b ol
FLA-H FLA-H FLi-H FL1-H
FL1-H/ Annexin V
C Ctrl Dox 1xIC;, Dox 2xIC;,
; . Gate' [No Gating) : ‘,; . Gate' [Nn Gating] ,‘; 1 Gate: [No Gating].
14.1% E 39.8% 4 46.4%
a4 aq a4
MES-SA 1N * 38 4 3
S| = - = 7 =z 3 .
o " i g //Y e
o 5.1% EE - 10.4% 11.8%
S % e % e oo % v o
i=j FLI-H FLA-H ’ FLIH
% : Gate [No Gating] : Gate [No Gating) :: Gate' [No Gating]
21 =7 37 3]
E E 17.4% E 42.9% 47.2%
]I: ‘ig ﬁg 'ig
i N 3 E E
MES-SAASNSsIRNA 21 . S S : ’ S
9 3 o g9 3
35 R i1
AT i kY ’ Ty /
3 5.1% 10.0% | 12.6%
4 Jrrm e e e
W1 A b o Wi w2 o wb Wi B2 Wi o w2
FLA-H FLI-H FLi-H

FL1-H/ Annexin V



5842

JOURNAL OF PROTEOMICS 75 (2012) 5822-5847

D Ctrl Dox 0.5xIC, Dox 1xIC, Dox 2xIC,,
:‘3 ] Gate' [Nn Gating] 'r‘] I Gate' [No Gating] :‘3 ] Gate' [No Gating) R I Gate' [Nn Gating]
E 7.9% 26.1% 40.1% 53.8%
2y aq %y aq
Dxs 8 " 3 i B L
3 7 2 3 2 3 2 3
.8 Sy r Sy / Sy Sy
£ 3 6.5% k 14.6% 3 11.7% 3 10.2%
S| b v v vem b b o v e L e e v e % b e e e
— W ud w5 b s W w w2 ] s b Wi w s b w2
u FLA-H FL1-H FLA-H FLA-M
a
H Gate: [No Gating] b Gate' [Nn Gating) 1) Gate' [No Gating] o Gate' [No Gating]
[ 3] n] =] "]
o 15.7% 43.7% 3 52.8% 3 76.1%
= ] 1 3 3
= L Sy ' Rl
ASNSsiRNA 3] 3 7 ] 1
Dx5 I Eﬂ.g ” g*ﬁg ' Eﬂ.g ! Emg
ot I ] 9l S 4
/ 15.1% 16.5% E 17.1% 3 7.5%
% T & T T % T T & ST
W2 b o w2 w2 b ¥ ] w2 W2 W b Pl wi =~ wd Pl Wl

FL1-H FLI-H FL1-H FL1-H

FL1-H/ Annexin V

Fig. 8 - Treatment of doxorubicin with a dose-dependent manner induced apoptosis in mPR siRNA and ASNS siRNA-silenced
MES-SA and MES-SA/Dx5 cells. MES-SA and MES-SA/DxS5 cells were treated with indicated concentrations of doxorubicin or
left untreated for 48 h. After treatment, 10° cells were incubated with Alexa Fluor 488 and propidium iodide in 1x binding
buffer at room temperature for 15 min, and then stained cells were analyzed by flow cytometry to examine: (A) effect of
doxorubicin on apoptosis in MES-SA and mPR siRNA silenced MES-SA cells. (B) Effect of doxorubicin on apoptosis in MES-SA/
Dx5 and mPR siRNA silenced MES-SA/Dx5 cells. (C) Effect of doxorubicin on apoptosis in MES-SA and ASNS siRNA silenced
MES-SA cells. (D) Effect of doxorubicin on apoptosis in MES-SA/Dx5 and ASNS siRNA silenced MES-SA/Dx5 cells. Annexin V is
presented in x-axis as FL1-H, and propidium iodide is presented in y-axis as FL2-H. LR quadrant indicates the percentage of
early apoptotic cells (annexin V positive cells), and UR quadrant indicates the percentage of late apoptotic cells (annexin V

positive and propidium iodide positive cells).

We determined numerous potential biological functions
of the identified proteins toward baseline resistance and
doxorubicin-specific resistance in human uterine cancer
cells using a Swiss-Prot search combined with KEGG pathway
analysis. Our findings should be useful for a systematic study
on the mechanisms of doxorubicin resistance in uterine
cancer. Fig. 9 shows a comparison of the expression profiles
of the differentially expressed proteins for both baseline and
doxorubicin-specific resistance. Proteins known to regulate
biosynthesis, redox regulation, gene regulation, and protein
folding are upregulated in MES-SA/Dx5, but not in MES-SA,
implying that doxorubicin-resistant cells have greater ability to
maintain cellular protein conformation, redox modification of
cellular proteins, gene expression, and biomacromolecule forma-
tion. For example, the induced expression of redox-regulated
proteins such as peroxiredoxins in resistant cells may account for
cancer progression and invasiveness [16].

Doxorubicin drug resistance mechanisms adopted by
uterine cancer cells involve drug efflux and anti-apoptosis
responses. Doxorubicin diffuses into intracellular spaces to
increase its cellular concentrations. P-glycoprotein (P-gp), an
energy-demanding efflux transporter in the plasma mem-
brane, is able to pump doxorubicin out of cells using ATP
from phosphocreatine as an energy source. P-glycoprotein
overexpresses in MES-SA/Dx5 cells; thus, we propose that the
overexpression of creatine kinase in MES-SA/Dx5 increases
the capacity of phosphocreatine catabolism to generate ATP
for P-gp activity during drug efflux. Doxorubicin treatment

increases expression of ANXA7, which blocks the phosphoryla-
tion of RB protein, resulting in G1 phase arrest [17]. By contrast,
the insignificant changes in ANXA7 levels in doxorubicin-treated
MES-SA/DxS5 cells indicate that ANXA7 might play a critical role
in inducing resistant cells escaping G1 phase arrest; MBP-1, the
translated form of ENO-1, negatively regulates c-Myc gene
expression, and thus, inhibits cell apoptosis [18]. This implies
that resistant cells avoid doxorubicin-induced cell death by
preventing the downregulation of ENO-1. A recent report
indicated that cyclophilin A (Cyp A) acts as a negative regulator
of apoptosis by sequestering cytochrome c [19]. Thus, the
overexpression of Cyp A offers a strategy for resistant cells to
escape doxorubicin-induced cell death through the inhibition of
cytochrome Crelease. Additionally, a recent study reported that
overexpression of ERp29 attenuates doxorubicin-induced cell
apoptosis through the upregulation of Hsp27 in breast cancer
cells, and that upregulation of ERp29 and Hsp27 was detected in
doxorubicin-resistant breast cancer cells [20]. This observation
is in partial agreement with our current study, in which we
found that neither ERp29 nor Hsp27 exhibits significant changes
in expression following doxorubicin treatment of MES-SA/Dx5
cells, but are downregulated in MES-SA cells. Moreover, ERp29
may downregulate elF2a expression, and further stimulate
Hsp27 activity. This process might alleviate misfolded and
unfolded protein-induced ER stress in resistant cells. During
catabolism, the mitochondrial electron transport system de-
grades intracellular doxorubicin to its semiquinone form. The
semiquinone subsequently reacts with iron, hydrogen
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Fig. 10 — A hypothetical model of doxorubicin drug-resistance in uterine cancer. The proposed doxorubicin-resistance
mechanisms used by uterine cancer cells involve drug efflux and anti-apoptosis processes. Doxorubicin diffuses into
intracellular spaces to increase its concentration within cells. P-glycoprotein is able to pump doxorubicin out of cells that rely
on phosphocreatine through creatine kinase as an energy source. Treatment with doxorubicin results in upregulated ANXA7
expression, and ANXA7 then blocks phosphorylation of the RB protein, allowing resistant cells to escape G1 arrest. MBP-1
negatively regulates c-Myc gene expression, promoting cell survival, implying that resistant cells prevent doxorubicin-induced
cell death through decreased expression of ENO-1. Drug resistant cells sequester calcineurin and inhibit Fas/FasL dependent
apoptosis through de-phosphorylation of NEAT by calcineurin [31]. Additionally, NPM1 protects resistant uterine cancer cells
from doxorubicin exposure, and shows upregulation in drug-resistant cells. Overexpression of NPM1 in resistant cells might
also inhibit IRF-1 activity, decreasing mitochondrial permeability and inhibiting doxorubicin-induced programed cell death.
Cyp A is an anti-apoptosis factor, which inhibits pro-caspase3 activation by binding to cytochrome C. The observed
overexpression of Cyp A implies that resistant cells escape doxorubicin-induced cell death by inhibiting caspase3 activation.
ERp29 downregulates eIF2a expression and further stimulates Hsp27 activity; this process alleviates ER stress in resistant cells
induced by misfolded and unfolded proteins. The observation that there is no significant change in Hsp27 expression in
resistant cells during doxorubicin exposure indicates the blockage of apoptosis by sequestration of cytochrome C.
Doxorubicin-induced ROS is scavenged by PXN2, preventing the accumulation of misfolded proteins in drug-resistant cells.
Overexpression of ASNS might inhibit JNK phosphorylation to block c-Jun-associated apoptosis in resistant cells. We found
that mPR binds to PDK-1 to induce Akt phosphorylation and promote cell survival. Resistant cells might exploit this process to
escape doxorubicin-induced cell death. Moreover, GSTO-1 plays a role in stimulating the Akt-related pathway to promote cell
survival in resistant cells. Identified proteins involved in drug-resistant networks are highlighted in red. Purple arrows
represent doxorubicin-modulated proteins expressed by MES-SA cells, and blue arrows represent baseline resistances
between MES-SA/Dx5 and MES-SA cells. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

peroxide, and oxygen to produce reactive oxygen species (ROS),
leading to cell damage or even cell death [21-23]. Thus,
chemotherapy-resistant cancer cells develop defense mecha-
nisms, including overexpression of redox-modulated proteins
to scavenge doxorubicin-induced ROS. In this study, we
demonstrated the upregulation of peroxiredoxin 2 in MES-SA/
DxG5 cells, with the implication that peroxiredoxin 2 reduces ROS
levels and prevents ROS-induced cytotoxicity in resistant

cells. Similarly, glutathione S-transferase omega-1 showed
significant downregulation during doxorubicin treatment of
MES-SA but not in MES-SA/Dx5 cells, implying that glutathione
S-transferase omega-1 plays an anti-apoptotic role in cell
resistance against doxorubicin toxicity in MES-SA/Dx5 cells.
Bcl-2 may sequester calcineurin A and inhibit Fas/FasL-
dependent apoptosis through de-phosphorylation of NEAT by
calcineurin A [24]. This study demonstrated that calcineurin A
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is significantly downregulated in MES-SA/Dx5, but not in
MES-SA cells, suggesting that downregulation of calcineurin A
inhibits doxorubicin-induced cell apoptosis by constitutively
blocking the de-phosphorylation of NEAT in MES-SA/Dx5 cells.

Nucleophosmin (NPM1) was originally reported as a non-
ribosomal nucleolar phosphoprotein that occurs at high levels
in the granular regions of the nucleolus [25]; it is highly
conserved in vertebrates and is widely distributed across
different species [26]. NPM1 is a multifunctional protein
associated with an array of biological and pathological process-
es. For example, nucleolar protein B23 can shuttle between the
nucleus and cytoplasm during various stages of the cell cycle
[27], and it may play a role as a molecular chaperone to prevent
protein aggregation and thermal denaturation [28]. Thus, NPM1
may play an important role in protecting uterine cells from
environmental stresses, such as doxorubicin attack. Addition-
ally, the overexpression of NPM1 in resistant cells might also
inhibit IRF-1 activity to decrease mitochondrial permeability
and inhibit doxorubicin-induced programed cell death [29,30].
In accordance with our findings, NPM1 is upregulated in
MES-SA/Dx5, but not in MES-SA cells. Additionally, comparison
with MES-SA/DxS5 cells shows that NPM1 deregulates in MES-SA
cells following treatment with doxorubicin.

Reticulocalbin-1 (RCN 1) is an endoplasmic reticulum-
resident calcium-binding protein. Kuramitsu et al. used proteo-
mic analysis to associate the increased expression of RCN 1 with
the acquisition of gemcitabine drug resistance [31]. In our study,
upregulation of RCN 1 was apparent in MES-SA/Dx5 cells,
suggesting that its increased expression correlates with multiple
drug resistance in cancer cells. To the best of our knowledge, this
study is the first to report RCN 1 as a resistance marker for
doxorubicin resistance.

Several key regulatory proteins mediate the interaction of
heat shock proteins to block apoptosis. The intrinsic pathway
of caspase-mediated apoptosis is stimulated by c-Jun kinase,
resulting in the release of cytochrome c from the mitochon-
dria, and the subsequent activation of a caspase cascade
involving caspases 8 and 3, each of which is inhibited by heat
shock cognate 71. Furthermore, heat shock cognate 71 in-
teracts with Bcl-2 through Bag-1, allowing incorporation of the
complex into the mitochondrial membrane to inhibit apopto-
sis [32]. Heat shock protein 27 inhibits the extrinsic apoptotic
pathway through death receptors at caspase 9 [33,34]. In this
study, heat shock cognate 71 and heat shock protein 27 were
both downregulated in doxorubicin-treated MES-SA but not in
MES-SA/Dx5 cells, implying that heat shock cognate 71 and
heat shock protein 27 are essential for the development of
doxorubicin resistance in uterine cancer, and are potential
targets for resistance-related therapies.

Calumenin was strongly upregulated in our doxorubicin-
resistant MES-SA/Dx5 cells. The protein inserts into the
endoplasmic reticulum during regulation of cellular Ca®*
[35]; the release of the Ca®* ion from the endoplasmic
reticulum under stress conditions is a known mechanism for
inducing apoptosis. Thus, researchers have proposed that
calumenin is responsible for calcium sequestration, and that
it blocks doxorubicin-induced apoptosis [36,37]. We found that
calumenin levels were elevated in MES-SA/Dx5 cells, whereas
its expression was downregulated in doxorubicin-treated
MES-SA cells. This demonstrates that calumenin plays a role

in the formation of doxorubicin resistance in uterine cancer,
and is thus a potential target for resistance-related therapies.

In our proteomic analysis of doxorubicin resistance in
uterine cancer, we selected 2 potential target proteins, mPR
and ASNS, for further evaluation of their potential as
therapeutic targets, because they each exhibited significant
upregulation in resistant lines during proteomic analysis. A
number of cancer cells overexpress mPR compared to normal
cells, and thus, mPR is recognized as an important disease
marker for cancer detection and cancer progression, and is a
potential chemotherapeutic target [38,39]. The mPR protein is
involved in the control of cancer cell proliferation and growth
[40] through direct interactions between its cytochrome
b5-binding domain and target proteins such as Insig-1 [41].
Recent studies report that mPR mediates progesterone’s
anti-apoptotic function [42] and induces Akt phosphorylation
to promote cell survival [43]. However, there are no literature
reports of the role of mPR in doxorubicin drug resistance in
uterine cancer. The second target protein, ASNS, catalyzes
cellular aspartate conversion to asparagine. Previous reports
have indicated that overexpression of ASNS inhibits JNK
phosphorylation to block c-Jun-associated apoptosis in pan-
creatic cancer cells, and proposed blocking the biosynthesis of
ASNS as a practical strategy for pancreatic cancer therapy [44].
ASNS studies have tended to focus on the enzyme’s role in
leukemia. Inhibition of ASNS is an alternative approach to
deprive malignant lymphocytes because these cells are highly
reliant on asparagine; thus, ASNS inhibitors might offer a
strategy for inhibiting protein biosynthesis in malignant
lymphocytes. In agreement with our proteomic results, ASNS
was overexpressed in resistant uterine cancer cells, and
ASNS inhibitors used in leukemia therapy, such as adenylated
sulfoximines, are therefore candidates for treating doxorubicin
resistance. We found that knockdown of mPR or ASNS causes
significantly reduced viability of MES-SA/Dx5 cells, but not
MES-SA cells, suggesting the potential application of ASNS to
the inhibition of doxorubicin resistance in uterine cancer
therapy.

Conducting proteomic analysis using a large-scale 2D-DIGE
system with MALDI-TOF/TOF MS was effective in the detection
of uterine proteins with differential expression in uterine
cancer cell lines that were sensitive or resistant to doxorubicin.
Such proteins may be involved in chemotherapy resistance
mechanisms. We grouped the proteins identified in this study,
and proposed doxorubicin resistance mechanisms that may
occur in MES-SA cells (Fig. 10). The identified upregulated
proteins might serve as indicators for predicting the response of
uterine cancer patients to treatment with doxorubicin or other
drugs such as 5-fluorouracil. This study showed that ASNS and
mPR proteins are useful in the alleviation of doxorubicin drug
resistance. Further clinical research is needed to evaluate these
2 proteins’ potential as therapeutic targets.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.ymgme.2012.07.025.
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